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Abstract. Inverse model based multiobjective evolutionary algorithm
aims to sample candidate solutions directly in the objective space, which
makes it easier to control the diversity of non-dominated solutions in
multiobjective optimization. To facilitate the process of inverse model-
ing, the objective space is partitioned into several subregions by pre-
defining a set of reference vectors. In the previous work, the reference
vectors are uniformly distributed in the objective space. Uniformly dis-
tributed reference vectors, however, may not be efficient for problems
that have nonuniform or disconnected Pareto fronts. To address this is-
sue, an adaptive reference vector generation strategy is proposed in this
work. The basic idea of the proposed strategy is to adaptively adjust the
reference vectors according to the distribution of the candidate solutions
in the objective space. The proposed strategy consists of two phases in
the search procedure. In the first phase, the adaptive strategy promotes
the population diversity for better exploration, while in the second phase,
the strategy focused on convergence for better exploitation. To assess the
performance of the proposed strategy, empirical simulations are carried
out on two DTLZ benchmark problems, namely, DTLZ5 and DTLZ7,
which have a degenerate and a disconnected Pareto front, respectively.
Our results show that the proposed adaptive reference vector strategy is
promising in tacking multi-objective optimization problems whose Pare-
to front is disconnected.

Keywords: Multiobjective Optimization, Model Based Evolutionary Op-
timization, Inverse Modeling, Reference Vectors

1 Introduction

A multiobjective optimization problem (MOP) involves several conflicting ob-
jectives to be optimized simultaneously. Without loss of generality, an MOP can
be formulated as follows:
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min f(x) = (f1(x), f2(x), ..., fm(x))

s.t. x ∈ X, f ∈ Y
(1)

where X ⊂ Rn is the decision space and x = (x1, x2, ..., xn) ∈ X is the decision
vector, Y ⊂ Rm is the objective space and f ∈ Y is the objective vector, which
is composed of m objective functions f1(x), f2(x),...,fm(x) that map x from X
to Y . Due to the conflicting nature of the objectives, it is impossible to optimize
all the objectives with one single solution. Consequently, there exists a set of
optimal solutions, termed as Pareto optimal solutions, that trade-off between
different objectives. The Pareto optimal solutions are often called the Pareto set
in the decision space and image formed by the Pareto optimal solutions in the
objective is termed Pareto front.

To obtain the Pareto optimal solutions, various multiobjective evolutionary
algorithms (MOEAs) have been proposed, e.g. the elitist non-dominated sorting
algorithm, known as NSGA-II [5], the decomposition based algorithm, called
MOEA/D [14], among many others [16]. Most traditional MOEAs often require
a high degree of diversity in storing the non-dominated solutions found so far
in the current population or in an external archive. By contrast, model-based
MOEAs [11,12,15] can alleviate the requirement on solution diversity by focus-
ing on the construction of a probabilistic model in the decision space during the
search. Such model based MOEAs, however, still rely on the use of a solution set,
such as an archive, to represent the obtained non-dominated solutions. Another
line of research that aims to alleviate the requirement on diversity is to build
a regression model to represent the solutions obtained in the final generation
by the optimizer [7, 9], which can be used to generate new solutions after the
optimization process is complete, thereby enhancing the diversity of the final
solutions. Inspired by the ideas in this line of research, a multiobjective evolu-
tionary algorithm using Gaussian process based inverse modeling (IM-MOEA)
has been proposed [2].

In IM-MOEA, an inverse model that maps candidate solutions in the objec-
tive space onto the decision space is built during the optimization. To facilitate
the inverse modeling, the objective space is partitioned into several subregions
using predefined reference vectors. By associating each candidate solution with a
particular reference vector, a number of inverse models are built for each subre-
gion by using the candidate solutions relating to this subregion as training data.
In the previous work of IM-MOEA, the reference vectors are uniformly gener-
ated by means of the canonical simplex-lattice design method [3]. This method
for generating reference vectors works well for MOPs with a continuous and
uniform Pareto front. However, for some MOPs with a nonuniform or discon-
nected Pareto front, the predefined, uniformly distributed reference vectors may
result in low efficiency, as some reference vectors may not be associated with any
candidate solutions, thus causing a waste of computational resource. To tackle
this problem, here we present an adaptive reference vector generation strategy
for IM-MOEA. The proposed strategy is able to adapt the distribution of the
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reference vectors to the distribution of the candidate solutions in the objective
space.

In the following, we first briefly introduce the recently proposed IM-MOEA in
Section 2. Then the adaptive reference vector generation strategy is described in
Section 3. Section 4 presents experimental results for assessing the performance
of the proposed adaptive strategy. Finally, conclusion is drawn in Section 5.

2 IM-MOEA

Traditional EDAs aim to estimate the distribution of the candidate solutions
in the decision space, while the models in IM-MOEA are built to represent the
inverse mapping from the objective space to the decision space. With the inverse
models thus built, evenly distributed candidate solutions can be directly sampled
in the objective space and then mapped onto the decision space.

Considering that the estimation of the entire inverse mapping from the m-
dimensional objective space to the n-dimensional decision space can be techni-
cally difficult, the multivariate inverse model is decomposed into a number of
univariate regression models:

P (X|Y ) ≈
n∏

i=1

(P (xi|fj) + ϵj,i), (2)

where j = 1, 2, ...,m, i = 1, 2, ..., n, P (xi|fj) is an univariate model that rep-
resents the inverse mapping from objective fj to decision variable xi, and ϵj,i
is an error term. For convenience, it is assumed that ϵj,i ∼ N (0, (σn)

2) can be
captured by additive Gaussian noise. Consequently, each univariate model to-
gether with the error term is realized using Gaussian process [13], which has the
advantage of modeling both the global regularity and the local randomness in
the distribution of the non-dominated solutions during the search. It is worth
noting that although the decomposition strategy does not take into account the
variable linkages explicitly, in our algorithm, a random grouping method has been
adopted to implicitly learn the correlations between different decision variables
by relating a number of decision variables with each objective. For example, for
a three-objective MOP, if the group size is 2, three groups of models will be
generated, each containing two univariate models. The reader is referred to [2].

In order to facilitate the inverse modelling, some pre-defined uniformly dis-
tributed reference vectors are used to partition the objective space into a num-
ber of subregions. To generate these reference vectors, the uniformly distributed
points are firstly generated on a unit hyperplane and then mapped to a unit
hypersphere, as shown in Fig. 1. With the pre-defined reference vectors (or sub-
regions), the entire population can be partitioned into a number of subpopula-
tions by associating the candidate solutions with different reference vectors. To
associate each candidate solution with a particular reference vector, the angle (in
the objective space) between each candidate solution and each reference vector
is calculated, and a candidate solution is associated with a reference vector if
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Fig. 1. An example of how to generate a number of 15 uniformly distributed reference
vectors in a 3-objective space.

and only if the angle between the candidate solution and the reference vector is
smallest among all reference vectors.

Partitioning a population using reference vectors in the objective space was
first suggested in [10], which has also been adopted in a few other recently
proposed algorithms such as NSGA-III [4,8]. However, the population partition
strategy in NSGA-III is to use reference points distributed on a unit hyperplane
in the objective space to guide the convergence of the population, and as a
consequence, each individual in the population is expected to converge to a
corresponding reference point. By contrast, our method is motivated to partition
the actual objective space by setting a number of reference vectors, and around
each reference vector, a subpopulation is maintained in the subregion defined
by this reference vector. In each subregion, promising candidate solutions are
selected using non-dominated sorting and crowd distance [5]. Inverse models are
then built using the selected candidate solutions as the training data. Therefore,
reproduction is operated in each subregion by sampling the inverse models built
for this region. At the end of each generation, the offspring generated in each
subregion is combined together to create the parent population for the next
generation.

As shown in Fig. 2, the main operations of IM-MOEA, i.e., non-dominated
sorting, selection, inverse modeling and reproduction, are all carried out within
each subpopulation once the entire population is partitioned. Therefore, the
reference vectors, which directly determine how the population is partitioned,
play a central role in IM-MOEA.

3 Adaptive Reference Vector Generation

The adoption of uniformly distributed reference vectors in the original IM-
MOEA is based on the implicit assumption that the Pareto front of the MOP
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Fig. 2. The framework of the IM-MOEA.
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Fig. 3. Examples where there exist invalid reference vectors: (a) only 5 out of 15
reference vectors are covered by the Pareto front of 2-objective DTLZ7; (b) only 3 out
of 15 reference vectors are covered by the Pareto front of 3-objective DTLZ5.
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is uniformly distributed in the whole objective space. This assumption may be
impractical for many real-world MOPs. In this work, without the loss of general-
ity, we use two benchmark functions in the DTLZ test suite [6], namely, DTLZ5
and DTLZ7, as examples to examine the effectiveness of the proposed strategy
for adaptively generating reference vectors.

DTLZ7 is a typical MOP with a disconnected Pareto front consisting of
2m−1 disconnected segments, where m is the objective number. For example,
as shown in Fig. 3(a), the Pareto front of a 2-objective DTLZ7 consists of two
Pareto optimal regions. Moreover, both segments of the Pareto front distribute
in the left part of the objective space, resulting in a large region in the objective
space that has no Pareto optimal solutions. In this case, for 15 reference vectors
uniformly distributed in the objective space, only 5 out of 15 are associated with
the Pareto optimal solutions, leaving 10 reference vectors unused.

Another typical MOP that suffers from such problems is DTLZ5. This MOP
has a degenerate Pareto front, i.e., the Pareto front is always a curve regardless
of the dimensionality of the objective space. As shown in Fig. 3(b), the Pareto
front of the 3-objective DTLZ5 is a curve in the middle of the objective space.
In this case, again, most of the uniformly distributed reference vectors are not
in use (in this example only 3 out of 15 reference vectors), which will give rise
to considerable waste of computational resources.

In practice, the distribution of the true Pareto front is usually not known
beforehand. Therefore, in order to effectively use all reference vectors and the
associated computational resources, it is essential to detect the distribution of
the candidate solutions during the search and then adapt the distribution of the
reference vectors accordingly. As mentioned before, since one candidate solution
is associated with a reference vector if and only if their positions in terms of the
angle between them in the objective space are closest, the density of the solutions
in a subregion can be easily estimated by counting the number of candidate
solutions associated with each reference vector. In this way, we are able to rank
the reference vectors according to the numbers of candidate solutions associated
with them. If one reference vector is associated with a small number of candidate
solutions, it indicates that the density of candidate solutions in the subregion
specified by this reference vector is small. In the extreme case, as shown in Fig. 3,
no candidate solutions will be associated with a reference vector, which is termed
an invalid vector in this work.

Based on the ranking of the reference vectors, we can also remove some
undesirable reference vectors. Intuitively, the reference vectors associated with
few candidate solutions should be removed. However, our empirical observations
show that removing these reference vectors too early may cause a severe loss
of population diversity, as in the early stage of search, exploration of the whole
search landscape can be more important than exploitation, whereas in the late
stage of the search, exploitation is more desirable. In order to adapt the reference
vectors to the different preferences at different search stages, we divide the search
into two phases: exploration phase and exploitation phase. In the exploration
phase, since the reference vectors are expected to be widespread, the reference
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vectors associated with too many candidate solutions are preferentially removed.
By contrast, in the exploitation phase, reference vectors associated few candidate
solutions are removed since a high density of reference vectors in the subregions
to be exploited can accelerate convergence.

Procedure 1 The pseudo code of the adaptive reference vector generation s-
trategy.

Input:current generation t, max generation max t, the current reference vectors V (t),
current population P (t)
Output:the adapted reference vectors V (t+1)

1: randomly generate a new reference vector vn;
2: calculate the numbers of candidate solutions in P (t) that associated with each

reference vector in V (t);
3: if t < θ ∗max t then
4: /*exploration phase*/
5: remove the reference vector in V (t) which is associated with themaximal number

of candidate solutions and replace it with vn;
6: else
7: /*exploitation phase*/
8: remove the reference vector in V (t) which is associated with the minimal number

of candidate solutions and replace it with vn;
9: end if
10: V (t+ 1) = V (t);

To maintain a relatively stable distribution of the reference vectors, only one
reference vector, i.e., the one is ranked first or last, will be removed in each
generation. Meanwhile, a new reference vector is randomly generated to replace
the removed one. In this way, in each generation, the extreme reference vector will
be replaced with a new, randomly generated reference vector. The procedure of
the adaptive reference vector generation strategy is summarized in Algorithm 1.
It can be seen that a control parameter θ is introduced to determine at which
generation the exploration stage is switched to exploitation. In Section 4, some
preliminary empirical studies have been carried out to investigate the influence
of parameter θ on the search performance.

4 Simulation Results

To assess the performance of the proposed adaptive reference vector generation
strategy, IM-MOEA with the adaptive strategy, denoted as A-IM-MOEA here-
after, is compared with the original IM-MOEA on four three-objective DTLZ
benchmark MOPs, including DTLZ1, DTLZ2, DTLZ5 and DTLZ7. The first two
MOPs (DTLZ1, DTLZ2) have a uniformly distributed Pareto front, while the
other two MOPs (DTLZ5, DTLZ7) have a degenerate and a disconnected Pare-
to front, respectively, refer to Fig. 3. The specific settings of these four MOPs
follow the recommendations in [6].
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In IM-MOEA and the proposed adaptive A-IM-MOEA, there are three pa-
rameters to be specified: the population size, the number of reference vectors,
denoted as Kr hereafter, the group size (for random grouping). The population
size is set to 150 in all the experiments. To investigate the sensitivity of the
proposed adaptive strategy to Kr, different settings (Kr = 10, Kr = 15 and
Kr = 28) have been used in the comparisons with IM-MOEA. In addition, it
is worth noting that the setting of the group size is dependent on the number
of decision variables. Since the numbers of decision variables of three-objective
DTLZ1, DTLZ2, DTLZ5 and DTLZ7 (7, 11, 11 and 21, respectively) are small,
the group size is simply set to 1.

The inverted generational distance (IGD) [1] is used as the performance in-
dicator in the performance comparisons:

IGD(P ∗, P ) =

∑
v∈P∗ d(v, P )

|P ∗|
, (3)

where P ∗ is a set of uniformly distributed solutions along the true Pareto front,
and P is an approximation, d(v, P ) is the minimum Euclidean distance from the
point v to P . The IGD metric is able to measure both diversity and convergence
of P if |P ∗| is large enough, and a smaller IGD value indicates a better perfor-
mance. In this work, a number of 500 uniformly distributed points are selected
for each benchmark MOP to be P ∗.

Table 1. Statistical results of IGD values obtained by A-IM-MOEA and IM-MOEA
(mean values in the first line and standard deviations in the second line). If one result
is statistically significantly better than the other one, it is highlighted.

Kr Algorithm DTLZ1 DTLZ2 DTLZ5 DTLZ7

10
A-IM-MOEA

5.91E-02 6.21E-02 6.05E-03 6.98E-02
1.37E-02 3.83E-03 6.24E-04 1.01E-02

IM-MOEA
4.97E-02 5.67E-02 1.77E-02 2.07E-01
9.60E-03 1.54E-03 1.94E-03 2.30E-02

15
A-IM-MOEA

3.83E-02 5.44E-02 4.77E-03 6.00E-02
6.19E-03 1.84E-03 6.23E-04 7.07E-03

IM-MOEA
5.04E-02 5.06E-02 1.50E-02 1.18E-01
1.71E-02 7.54E-04 1.56E-03 8.75E-03

28
A-IM-MOEA

4.55E-02 5.18E-02 4.04E-03 5.46E-02
1.12E-02 2.40E-03 5.53E-04 3.79E-03

IM-MOEA
4.76E-02 4.88E-02 1.06E-02 8.96E-02
1.07E-02 5.63E-04 1.12E-03 5.03E-03

+ / ≈ / − 2 / 1 / 0 0 / 2 / 1 3 / 0 / 0 3 / 0 / 0

The statistical results presented in this section are obtained from 20 inde-
pendent runs. In each independent run, a maximum of 50000 fitness evaluations
is used as a termination criterion for DTLZ2, DTLZ5 and DTLZ7. For DTLZ1,
150000 fitness evaluations are used. To compare the results obtained by A-IM-
MOEA and IM-MOEA, the Wilcoxon rank sum test is adopted at a significance
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level of 0.05. As a result of the Wilcoxon rank sum test, “+” means that the
IGD values obtained by A-IM-MOEA are statistically significantly smaller than
those obtained by IM-MOEA; “−” means that the IGD values obtained by A-IM-
MOEA are statistically significantly larger than those obtained by IM-MOEA;
and “≈” means that there is no statistically significant difference between the
IGD values obtained by A-IM-MOEA and IM-MOEA.
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Fig. 4. The statistical results of the IGD values obtained by A-IM-MOEA with 15
reference vectors and different settings of θ. In this figure, error bars are used to present
the mean and standard deviation.

Before comparing the performance of A-IM-MOEA and IM-MOEA, some
investigations regarding the setting of θ will be conducted. theta determines the
generation at which the exploration search stage is to be switched to exploitation,
refer to Algorithm 1. As shown in Fig. 4, different settings of θ may have different
impacts on different benchmark problems. For DTLZ5 and DTLZ7, which have a
degenerate and a disconnected PF, respectively, it seems that the performance of



X

A-IM-MOEA is relatively insensitive to the settings of θ, as long as it is not larger
than 0.7. This might be due to the fact that DTLZ5 and DTLZ7 are uni-modal,
exploration has no significant effect on the search performance. Exploitation,
which mainly contributes to convergence, can be important as the Pareto fronts
of these two MOPs are not uniformly distributed in the objective space. By
contrast, since the fitness landscape of DTLZ1 contains a large number of local
optima, sufficient exploration becomes more important. It can be seen in Fig. 4
(a) that when θ is between 0.1 and 0.3, the standard deviation of IGD is smaller
compared to that in other settings, which implies a more stable performance of
A-IM-MOEA. Among the four benchmark MOPs, DTLZ2 is uni-modal and has
a uniformly distribute Pareto front. Therefore, the performance of A-IM-MOEA
is not very sensitive to the settings of θ either.
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Fig. 5. The solutions obtained by A-IM-MOEA and IM-MOEA with 28 reference vec-
tors on DTLZ5 in the final population of the best singe run.

Based on the empirical investigations on the setting of θ, we use θ = 0.2 for all
experiments for comparing A-IM-MOEA and IM-MOEA. The statistical results
obtained by A-IM-MOEA and IM-MOEA are summarized in Table 1. It can
be seen that A-IM-MOEA significantly outperforms IM-MOEA on DTLZ5 and
DTLZ7, regardless of the number of reference vectors. As evident from Fig. 5,
the solutions obtained by A-IM-MOEA show significantly better convergence. It
is because the reference vectors in A-IM-MOEA have been successfully adapted,
thus increasing the sampling density around the true Pareto front rather than the
entire objective space. To verify this statement, the reference vectors are plotted
together with the true Pareto front. To better visualize the adapted distribution
of the reference vectors, the points are mapping into a 2-D (f1 and f2) plane,
as shown in Fig. 6. It can be seen that the reference vectors in A-IM-MOEA
are mostly distribute around the true Pareto front, whilst the reference vectors
in IM-MOEA, without any adaption, still uniformly distributed in the entire
objective space.
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Fig. 6. The solutions obtained by A-IM-MOEA and IM-MOEA with 28 reference vec-
tors on DTLZ5 in the final population of the best singe run. To ease the observations,
the points are mapping into a 2-D (f1 and f2) plane from the 3-D objective space.
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Fig. 7. The solutions obtained by A-IM-MOEA and IM-MOEA with 28 reference vec-
tors on DTLZ7 in the final population of the best single run.
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Fig. 8. The solutions obtained by A-IM-MOEA and IM-MOEA with 28 reference vec-
tors on DTLZ7 in the final population of the best singe run. The points are mapping
into a 2-D (f1 and f2) plane from the 3-D objective space for better visualization.

Similar observations can be made from the results on DTLZ7 as well. As
evident from Fig. 7, the solutions obtained by A-IM-MOEA show a promising
distribution, while most of the solutions obtained by IM-MOEA distribute on the
edges of the true Pareto front consisting of four disconnected piecewise segments.
In addition to disconnection, the Pareto front of DTLZ7 shows significant bias
on the m-th objective, thus resulting the distribution of the Pareto front central-
ized close to the third axis (f3) in a 3-D objective space. These properties raise
considerable difficulties for IM-MOEA which adopts a uniformly distributed ref-
erence vectors. By contrast, the adaptive reference vector generation strategy
adopted in A-IM-MOEA has significantly better efficiency, as indicated in Fig.
8.

From the statistical results in Table 1, another interesting observation is
the comparable performance of A-IM-MOEA and IM-MOEA on the other two
MOPs, DTLZ1 and DTLZ2, which have a uniformly distributed Pareto front.
On DTLZ1, the performance of A-IM-MOEA is slightly better while on DLTZ2,
IM-MOEA shows slightly better performance. We surmise that A-IM-MOEA
is outperformed by IM-MOEA on DTLZ2 because the search process is more
or less disturbed by the adaptively changing reference vectors. By contrast, the
predefined uniformly distributed reference vectors adopted in IM-MOEA can
lead to a more stable search. For MOPs with a uniformly distributed Pareto
front, where a predefined set of reference vectors is more desirable, IM-MOEA
can outperform A-IM-MOEA. Nevertheless, for DTLZ1, which has a uniformly
distributed Pareto front as well, this observation does not hold. This might be
attributed to the fact that DTLZ1 is a multi-modal MOP, which may require a
higher degree of population diversity for a better exploration. In this case, A-
IM-MOEA can be more promising as the adaptively changing reference vectors
can generate higher population diversity than the predefined reference vectors.
As shown in Fig. 9, the adaptively changing reference vectors have enhanced the
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Fig. 9. The convergence profiles of the IGD values in the best single run with 15
reference vectors of A-IM-MOEA and IM-MOEA respectively.

convergence speed of A-IM-MOEA in the exploration stage on DTLZ1. However,
on DTLZ2, which is a uni-modal MOP, the convergence profiles of A-IM-MOEA
and IM-MOEA show little difference.

5 Conclusion

An adaptive reference vector generation strategy is proposed in this paper, which
has shown to be promising on two MOPs having a discrete or non-uniform Pareto
front. In addition, the MOEA using the proposed strategy performs comparably
with the one using uniformly distributed reference vectors on MOPs having a
uniform Pareto front distributed in the whole objective space. In addition, an
interesting observation is that the adaptive reference vectors are able to generate
better population diversity to enhance the performance of IM-MOEA on multi-
modal MOPs like DTLZ1.

In the future, the performance of the proposed adaptive strategy for generat-
ing reference vectors will be further assessed on additional MOPs. For example,
it can be interesting to see how it performs on constrained MOPs, where the
Pareto front is irregular as well. The mechanism for switching between explo-
ration and exploitation also needs further examination.
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