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Abstract. The incorporation of prior knowledge into neural networks can improve
neural network learning in several respects, for example, a faster learning speed
and better generalization ability. However, neural network learning is data driven
and there is no general way to exploit knowledge which is not in the form of data
input-output pairs. In this paper, we propose two approaches for incorporating
knowledge into neural networks from fuzzy rules. These fuzzy rules are generated
based on expert knowledge or intuition. In the first approach, information from the
derivative of the fuzzy system is used to regularize the neural network learning,
whereas in the second approach the fuzzy rules are used as a catalyst. Simulation
studies show that both approaches increase the learning speed significantly.

1. Introduction

Conventional neural network learning algorithms are based solely on
the available data examples. Knowledge about the system which is not
in the form of input-output data pairs cannot usually be exploited.
In real applications this restriction can be problematic. The data ac-
quisition is usually expensive and/or the data is inherently noisy and
its reliability therefore limited. Furthermore, if the whole system state
cannot be measured and a reconstruction process has to be applied,
the number of independent data pairs is reduced further. On the other
hand, more general knowledge about the system is often available in
linguistic form. The optimal exploitation of this knowledge for net-
work learning can reduce the number of required data sets and speed
up the learning process. Therefore, the transfer of knowledge, some-
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times termed hints, which is not in the usual data format, into neural
networks is currently receiving increasing attention.

Different forms of prior knowledge may be available. The most com-
monly used prior knowledge is called the invariance hint (Abu-Mostafa,
1993b). This hint suggests that f(z) = f(z') for some z and z'. Another
type of hint is the monotonicity hint (Sill and Abu-Mostafa, 1997),
which implies that the function to be learned is monotonically increas-
ing or decreasing within a certain range. In addition, the minimum
Hamming distance (Al-Mashouq and Reed, 1991) and knowledge about
the derivative of the input-output function of the system (for example,
it is straightforward to know that if the input increases, the output
increases too) can be used as prior knowledge. According to the dif-
ferent types of available knowledge, different cost functions have been
suggested as a regularization term that is added to the standard error
function of the neural network learning algorithm.

If we take a closer look at the learning process in humans, we find
that it can also be helpful if several related tasks are learned at the
same time. Hence, the second main approach to the incorporation of
knowledge into neural networks is to let the neural network learn several
related tasks simultaneously (Caruan, 1995). These additional tasks are
called catalytic hints (Abu-Mostafa, 1993a).

Theoretical analysis of some simple problems has shown that adding
extra knowledge or hints to the learning process improves the per-
formance of neural networks after and during learning. Abu-Mostafa
(1993a) and Barber (1996) have shown that hints or extra knowledge
improve the generalization ability of neural networks.

The hints we mentioned above are not very general. A more general
approach to using additional information besides data pairs for network
learning would be to express this information in a fuzzy rule system
(Zadeh, 1973) and to use the fuzzy system as a regularization term or a
catalytic hint for network learning. In this way, a more general structure
for knowledge representation, which is not based solely on data pairs,
can be exploited for the adaptation of a neural network. The knowledge
may come from an expert, from intuition or from some intuitive analysis
of the system. The kinetics of a robot manipulator serves as an example
in this work, since intuitive fuzzy rules are easily generated (Section 2)
which can be exploited for network learning. The fuzzy system captures
the general behaviour of the system (robot manipulator) and can be
used as a regularization term (Section 3) and as a catalytic hint (Section
4) for network learning. In Section 5, the results from both methods
will be presented and analyzed. We conclude the paper with a summary
of our findings.
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2. Knowledge Representation with Fuzzy Rules

In many areas of application more general knowledge about the be-
haviour of a system is available (i.e. from experts) which cannot be
described by input—output data pairs. Fuzzy systems often are a more
appropriate structure for the representation of this kind of knowledge.
The IF-THEN rule base in fuzzy systems is believed to be more compat-
ible with the way high level decision processes in humans are reached.
Furthermore, the variables used in fuzzy rules are linguistic variables
which are more appropriate to represent general knowledge (i.e. knowl-
edge about the main elements rather than limited details). In this
section we deduce several fuzzy rules for the simple robot manipulator
with two links. From Figures 1 (a), (b) and 2 (a) and from “common
sense” we can write down the following nine fuzzy rules, which we will
use in the next sections to supplement the purely data based learning
of the neural network.

y y

(a)
Figure 1. The fuzzy kinematics (a) ©; small and (b) ©; medium. The universe of
discourse for the inputs is [0, Z].

1. If 0; is small and 65 is small, then y is small;

2. If 6, is small and 6 is medium, then y is quite small;
3. If 6; is small and 6, is large, then y is medium;

4. If 0; is medium and 65 is small, then y is quite large;
5. If 6; is medium and 0, is medium, then y is large;

6. If ; is medium and 6, is large, then y is quite large;
7. If 01 is large and 62 is small, then y is very large;
8. If 6; is large and 6, is medium, then y is large;

9. If 6; is large and 6, is large, then y is medium

For the formulation of these fuzzy rules we used three linguistic
terms (small, medium and large) for the two linguistic input variables
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Figure 2. (a) The fuzzy kinematics ©; large. (b) Membership functions for the
inputs

and six linguistic terms (small, quite small, medium, quite large,
large and very large) for the linguistic output variables. We note
that these fuzzy rules have been obtained solely from observation of
the space relationships of the manipulators, without knowledge of the
mathematical relations.

Before these fuzzy rules can be used in neural network learning,
proper membership functions must be defined. The definition of the
membership functions is based on knowledge from human experts. A
straightforward choice is to use triangular membership functions as
shown in Figure 2 (b). For the sake of simplicity, we use fuzzy singletons
for the output variable; they are approximately set! as [0.0, 0.7, 1.0,
1.4,1.7, 2.0] assuming that the length of each link is 1. Figure 3 (a) and
(b) show the input-output surface described by the real system and by
the fuzzy system.

3. Regularization with Fuzzy Derivative

In this section, we will use the information from the derivative of
the fuzzy system to regularize the neural network learning. This fuzzy
derivative information can be seen as additional knowledge to be learned
by the neural network. Without the knowledge about the derivative,
the neural network learns only the information at each sample point. If
the derivative information at these points is given, the neural network
can additionally learn information about the behaviour of the system

! The first value has to be zero in order to guarantee that the height is zero if
both angles are zero.
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Real Kinematics

Fuzzy Kinematics

Figure 3. The kinematics of the real system (a) and the fuzzy system (b)

between sample points.

Regularization is a method for constrained learning of neural net-
works. Originally, regularization was used to improve the generalization
ability of neural networks based on empirical or Bayesian methods
(Bishop, 1995). In our work, we use the fuzzy derivative for regular-
ization primarily to provide extra knowledge to the neural network.
Similar to conventional regularization algorithms, we add an extra term
to the quadratic error function:

J=E+ Q. (1)
E is the conventional quadratic error function:
E = (™ —y")?, (2)

where 3™V is the output of the neural network and y? is the target out-
put. In equation (1) A is the regularization coefficient, which is usually
much smaller than 1 and has to be set manually. € is the regularization
term describing the difference between the partial derivatives of the
neural network and the target partial derivatives calculated from the
fuzzy rule system:

n ayNN ayFS 2
Q= —
zz:;( O0x; O0x; ) ’ 3)

where 7 is the number of inputs.
In order to derive the learning algorithm, we assume the neural
network is given in the following form:

H n
vV = "0 O wimi). (4)
j=1 i=1
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Equation (4) describes a standard feed-forward neural network with
one hidden layer and H hidden nodes. The activation function for the
output node is linear, whereas the activation function for the hidden
neurons is given by the following logistic function:

1(2) :

T 1texp(—z) (5)

Now we can derive the learning algorithm according to the cost
function in equation (1) using the gradient method. The differentiation
of equation (1) with respect to the output weights v;, results in

oJ OF o0

— =—+A— 6

BU]' ij + ij ( )
In equation (6), the first term on the right side is the standard gradient
term for neural network learning and will not be discussed further. For
the second term, we derive:

90 _ (W 9T 0y [0r) o
BU]' i—1 (9.%‘, (9.%‘, (9’()]'
B n ByNN B ayFS 3_D
N < 3.’11‘, 3.’11‘, 81]]"
=1
where: 8D
. f'(wij. (8)
J

Similarly, the learning algorithm for the input weights w;; can be
obtained:

(9)

N zn:(ByNN _ByFs) oD

awij =1 ox; ox; (9’(1),-]-
0D
Bwy vif'(-) +vjwi ()i, (10)

where f'(.) and f”(.) are the first and second derivatives of the activa-
tion function, thus

f'() = fa-§) (11)
1) = @=20f1-1). (12)

In order to calculate the derivative error in equation (3), we have
to calculate the derivative of the neural network with respect to its
inputs x;:
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vj=—— (13)

There are two different possibilities to calculate the derivative of
the fuzzy system. The first approach is to use the analytical form of
the fuzzy system and to apply the partial derivative to it.

The output of the fuzzy system described in Section 2 can be com-
puted as follows:

FS Z?:l Yi min (A}(el),A%(@))
YT TS min(AL6), A2(6,)) (14

where y; is one of the six singletons specified in Section 2, A}(6;) and
A2(85) are one of the three membership functions for 6; and 65 re-
spectively (see Figure 2 (b)). However, the analytical form of equation
(14) is rather complicated especially when triangular fuzzy member-
ship functions are used. An alternative approach is to calculate the
derivative numerically:

Sy (i + Ami) — y" S ()
6:1’:,' = A:L‘,' ’

(15)

where Ax; should be selected appropriately.

In this section, we derived the regularized error function J for the
neural network in equation (1) and its gradient in equations (9,10)
incorporating the fuzzy derivative information. In Section 5, we will
apply the proposed method to the problem of neural network learning
of the manipulator relations introduced in the last section.

4. Fuzzy Systems As Catalysts

In the previous section, we introduced the fuzzy derivative as a reg-
ularization term for neural network learning. As a second approach
to using fuzzy rules as additional knowledge for neural networks, we
introduce the idea of catalysts. Catalytic hints were first proposed by
Suddarth and Holden (1991) to improve the learning performance of
feed-forward neural networks. Abu-Mostafa (1993a) has shown that
by introducing catalytic hints into neural networks, the effective VC
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dimension of the problem will be reduced. The VC dimension (Blumer
et al., 1989; Vapnik, 1995) indicates an upper bound for the number
of examples needed by a learning process. The idea behind catalytic

Figure 4. Catalyst learning.

learning is shown in Figure 4. Here the output y of the output neuron
is required to approximate the target output y?. In addition, the output
Yo of the augmented (catalyst) neuron is required to approximate the
output, which is similar to the target output and which we will refer
to as y!. During neural network learning, these two output neurons are
trained simultaneously. It has been shown that by adding the extra
catalytic task the network can adapt the correct weights in the hidden
layer for the original task represented by y* more easily.

Of course, the main problem is to find an appropriate, related task
represented by y!, which is then called the catalyst function. A possible
choice for y¢ is a simplified version of the original output target y’.
Fuzzy systems designed by experts which only capture the principles
behind a certain task are therefore a sensible definition for y. In the
next section, we will use the fuzzy system from Section 3 as a cata-
lyst function for the neural network. This represents a second way to
incorporate non data-based knowledge into the neural network and to
support the standard network learning.

5. Simulation Results
In order to show the effectiveness of the two knowledge incorpo-

ration methods (Section 3 and 4), we implement these algorithms for
learning a simple robotics task using neural networks. The robot con-
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sidered in the following is a two-link planar manipulator as discussed
in Section 2. The length of each link is set to 1 and the angle of each
link varies between [0, Z]. All samples are generated randomly. The
neural network used is a feed-forward network with one hidden layer
and 10 hidden nodes and is trained with standard back-propagation.
The activation function for the hidden nodes is the logistic function and
the output nodes are linear. In each run two data sets are randomly
generated, one training set with 11 (insufficient? data) or 101 (suffi-
cient data) samples, respectively, and a test set with 200 samples. The
weights of the network with and without knowledge incorporation were
initialized randomly in the interval [—0.05,0.05]. All results presented
in this section are the average of twenty different runs.

5.1. REGULARIZED LEARNING

Firstly, we consider the situation in which the available learning
samples are insufficient. Eleven examples are generated for the training
set and 9000 learning cycles are carried out. Figure 5 (a) shows the
training and test errors with and without the fuzzy derivative regu-
larization averaged over 20 runs. We observe that by incorporating
knowledge from the fuzzy system the learning speed is significantly
increased and the final error after 9000 learning cycles considerably
reduced. The difference between the final error is larger on the test set
than on the training set which corresponds well with the assumption
that the incorporation of non-data based knowledge can enhance the
generalization ability of the network.

If the available data is sufficient, as in Figure 5 (b) (101 samples),
the final error is hardly reduced, however the effect on the learning
speed remains. The learning speed increase is more evident in Figure
6, which shows the first 1500 cycles of Figure 5 (b). It takes, for exam-
ple, on average ca. 300 cycles until the standard network reaches the
same error (0.25) as the network—fuzzy system on the test set. In real-
time applications the improvement of the learning speed of the neural
network can be essential and even imperative if neural networks are to
be employed at all.

% In the following the description of data sets as small or insufficient compared
to large or sufficient implies that the data sets do not contain enough information
about the system in order for the model to generalize well after learning, i.e. in order
to reach a similar error on the test set as on the training set.
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Figure 5. Regularized learning: (a) Training and test error for 11 data samples

averaged over 20 runs; (b) Training and test error for 101 data samples averaged
over 20 runs.
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Figure 6. Regularized learning. The training and the test error for 101 samples
during the first 1500 learning cycles (the first 1500 cycles of Figure 5).

5.2. CATALYZED LEARNING

In this section, we will show that fuzzy knowledge can be used as
a catalyst function in neural network learning. An output node and
the corresponding weights are added to the neural network as shown
in Figure 4. This node is removed after the network training. Similar
to the regularized learning, two cases are considered. In the first case
11 examples and in the second 101 examples are generated randomly
to train the task neuron of the neural network. The same number of
examples (identical input) are generated by the fuzzy rule system in
order to train the catalyst neuron. The training and test results are
shown in Figure 7 (a) and (b) again averaged over 20 runs. The results
are similar to those for the regularization technique. For the small data
set, the network with knowledge incorporation performs better, both
with respect to learning speed and the final error. Again the decrease
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Figure 7. Catalyzed learning: (a) Training and test error for 11 data samples aver-
aged over 20 runs; (b) Training and test error for 101 data samples averaged over
20 runs.

of the error on the test set indicates improvement of the generalization
ability of the network. In the case of the larger data set, Figure 7 (b), the
findings are similar to those in the last section. Figure 8 (a) highlights
the increase of the learning speed of the network for catalyzed learning.
Closer observation of the curves at later cycles, as shown in Figure 8
(b), reveals that the error curves for both the training and the test
data sets for the network with and without knowledge incorporation
intersect after 6500 cycles and 3500 cycles, respectively. Since the effect

error (RMS) error (RMS)
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(a) (b)
Figure 8. Catalyzed learning. The training and the test error for 101 samples during

the (a) first 1500 learning cycles (the first 1500 cycles of Figure 7) and (b) during
learning cycles 2000-9000.

also occurs on the test data, it is unlikely that overtraining of the feed-
forward neural network is responsible. An alternative explanation is
that, due to its fuzzy nature, the additional knowledge itself is not
error free. Therefore, after a certain number of cycles, the network
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performance depends on the accuracy of the additional knowledge. If
this is indeed the case, then a possible extension would be to reduce the
influence of the additional knowledge with increasing number of cycles.
In this case, the additional knowledge would be exploited at the start
of the training process as a means of speeding up the adaptation and it
would be removed in later periods when the fine tuning of the network
should depend solely on the assumed, more accurate data. Of course,
for insufficient data sets (Figure 7 (a)) this effect cannot occur.

6. Conclusion

In this paper, two feasible approaches to knowledge incorporation into
neural networks with the help of fuzzy rules have been suggested and
applied to the task of modeling a two-link robot manipulator. The
fuzzy rules can act as a bridge to transfer knowledge into examples
which can be exploited by neural networks during learning. The first
approach uses information from the derivative of the fuzzy system as a
regularization term for the network learning. In addition, the fuzzy rule
system, which is generated based on expert knowledge, was successfully
used as a catalytic function in neural network learning. In both cases the
learning speed of the network was increased considerably. As expected,
the quantitative increase depends on how much information is given
to the network in each cycle, i.e. how large and efficient the data
set is which is used for learning. The final error of the network was
decreased significantly for small data sets. The decrease on the test
set, in particular, indicates that the ability of the network to generalize
was enhanced by exploiting the additional knowledge. This kind of
knowledge exploitation has also been reported using non-fuzzy based
hints by Abu-Mostafa 1993a. In the case of the large data set and
catalyzed learning a slight increase in the error of the network was
observed, which might be due to the inherent error in the fuzzy system.

Knowledge incorporation by adding a regularization term performed
better than catalyst learning both with respect to the quantitative
decrease of the error and to the increase of the learning speed. At
the same time the error increase at later learning cycles only occurred
for the catalyst learning. This effect will be the subject of future re-
search together with the application of the method to real world data
sets in order to determine whether the improved performance of the
regularization method holds in general.
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